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%%% DATA REDUCTION FOR THE FREE FLIGHT SPARK RANGES

ABSTRACT

The data reduction process for the Free Flight Spark Ranges is described
with emphasis on recent modifications. The most important modification which
is that of swerve reduction is treated in some detail. Criteria for quality
of results are discussed and a table of time required for present machine data
reduction routines is included.
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INTRODUCTION

One of the basic problems »f the free flight range technique is that of
data reduction, This is partly due to the fact that in range work the actual
motion of a missile in flight is observed, and the aerodynamic forces and
moments are inferred from this motion. Due to its importance fer the inter-
pretation of range firings, the cumbersome nature of the analysis actually
limits the output of the ranges., For this reason a great effort has been
made to refine the whole prccess and to make as much use of large scale com-
puting machinés as possible.

One book [1] and two reports [2] , [3] have described most of the phases
of such an analysis which now is somewhat out of date. This report will
attempt to describe completely the present data reduction with an emphasis on
points which were not covered in previous publications,

The report will be divided into five sections:

1. Determination of atmospheric conditions and the geometrical motion.
2. Drag and roll reductions.

3+ Yaw reductions.,

4. Swerve reductions,

5. Criteria for quality of results.

DETERMINATION OF ATMOSPHERIC CONDITIONS AND GEOMETRICAL MOTION

Before discussing the necessary measurements and computations we will
first describe the two Free Flight Spark Ranges, A more complete description
may be found in [11] .

The first range to be put into operation was the Aerodynamics Range.
Through it models with body diameters or fin spans up to 57mm are launched
from a variety of guns and are observed by as many as L6 spark photographic
stations located over a 285' portion of the trajectory. Figure 1 shows the
range as Seen from the gun position, The cylinders on the left are spark
boxes which provide a spark of less than one microsecond's duration. The
missiles will normzlly pass inside the brass frames on the righ. and trigger
the spark either electrostatically or electromagnetically. Photographic
plates placed on the steel supports of each station then record the shadow
Wwf the missile directly, and indirectly by means of the mirrors. Figure 2
illustrates this arrangement. At up to twelve stations, the time intervals
between spark discharge can be recorded to a least count of 5/8 microsecond.
The stations are surveyed to a positional accuracy of ,01 inch and an angular
accuracy of 3 minutes.

_ The Transonic Range is shown in Figure 3. It observes 680 feet of tra-
jectory, contains 25 spark stations and ¢an launch missiles up to eight inches
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in diameter, Its instrumentation is complicated by the introduction of a
second spark and also cameras which record the shadows cast on 12! and 15!
beaded motion-picture type screens. In Figure li the geometrical details

of a gpark station are shown. Due to the greater distances involved and
increased light required the sparks are about two microseconds in duration.
Spark interval timing pulses can be recorded at sixteen stations., The
surveyed distances in the Transonic Range have an accuracy of about ,01!'.
An angular accuracy of 6 minutes of arc is obtained.

a, Atmospheric Conditions

For theoretical considerations it is necessary to know the velocity
of sound and density'of air. It is attempted to keep them constant through-
out the observed trajectory by air conditioning in the Aerodynamics Range and
by complete insulation and heating in the Transonic Range. Before each firing
the temperature, pressure, and relative humidity are measured. From the
temperature it is then possmble to calculate the velocity of sound in dry air,

VSD’ by the relation

where VSD is in feet/sec; T is the temperature in degrees Kelvin,
In [14] the following small correctlon for humidity is derived:
"'(1"' l’-l"p) VSD (2)

vhere Pw is pressure of water va.por1

P is total air pressulre
Due to the presence of water vapor the calculation of density is of some
interest. If P is the total pressure, P, the partial pressure of water vapor,
by use of Daltont's Law of Partial Pressure we can write:
P=T +P
a v
But if we assume the perfect gas law, this can be written as

P =P, + oy

where the densities, p.,are for the same temperature, T, but different pres-
sures, namely F, P, ﬁ; respactively. We now refer Py Fy to standard con-

ditions To of 0°C and P, of atmospheric pressure;

1 This pressure is easily calculated by means of the relative humidity and
tables of water vapor pressure for saturated air,




) To Pa . T0 Pw
P = Pao T P, Puo T P o

ao T P wa T T
Pao To Pua

-5 |P-(-Fp

0 Pe0 ¥ (3)
. . ) Pac o Puo
Equation (3) together with the known values of ——5 and 5—— = ,3783

o
now allows us to compute air density from measurements of P, T, and Pw‘

*  be FPlate Measurement and Geometrical Calculations

On both ranges the 2 axis points down range from the gun, the x axis
to the left looking downrange and y-axis up. Each station has a local origin
located on the intersection line of the planes of either the photographic
plates for Aerodynamic Range or the screens for the Trensonic Range so that
its .xy plane contains the Sparksl.

11" x 14" plates are employed on the Aerodynamics Range and are measured
on ruled grids set in light boxes. Figure 5 shows part of a plate including
a fiducial bar with three nicks. The edge of the bar is parallel to the
z axis and the x,y plane is located by the nicks, Knowing the distance from
the-edge of the bar to the local 2z axis we can therefore make measurementsin
the local coordinate system. The actual measursments taken are the location
of a reference point on the shadow's axis and the slope of the axis with
resgpect to the fiduecial bar,

On the Transonic Range the usual plate size is 4" x 5", These are
usually measured on Mann Comparators (Figure 6) or & Telecomputing Telereader
(Figure' 7)., The Telecomputing 'equipment, which is operated by the Measurement
Analysis Branch of the Computing Laboratory, has the desirable characteristic
of IBM card output. Since only pesitions may be measured by the Telereader,
the slope of the axis is obtained by the measurement of two points on the
shadow's uxis. Figure 8 is a sample plate from the Transonic Range?. Measure~-
ments are made with respect to the crossed survey wires and are converted to
distances on the screen by means of a magnification factor., These results are
then transformed to the coordinate system formed by the intersection of ex-
tensions of the screen. For both ranges,therefore, the measurements can be

1 On the Aerodynamics Range both the actual spark and its virtual 1mage in
the mirror are considered. ,

2 Since the camera is focused on the screen, the clear image is of the shadow
while the blurred image is of the missile itself,
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reduced to Locations of points on the shadows of the missile'!s axis and the
slopes these shadows have with reference to a station coordinate system.
The problem is, then, to derive from these data the missile's location amd
orientation in space at each spark station.

Since the sparks are located in each station's xy plane, they have
coordinates (cl, Cos 0) for the spark opposite the vertical plate and
(c?l',“éz', 0) for the other. (On the Aerodynamics Range the second spark

is actually a virtual spark which is located behind ‘the mirror). If we
denote the coordinates of the shadow of the reference point (xR, YRs zR) by

(o, Yys zv) on the vertical plate and by (xH, 0, zH) on the horizontal plate,

points on the line vetween the sparks and respective shadows must satisfy the
following equations:

-0 Y =¥y 27y
2. - (L)
170 Ca-yy 0=z
¥ _y-0 _ %"y
! 1. - (5)
c]_-:,cH cy o O zH .

Since the reference point must lie on beth lines we have the following
four equations for the three coordinates of this poéintl

*p = ¥y * By ¥p (6)
r =¥y * By xp (7)
%y
T TSR (8)
Zv
RTW UG OR (9)
where
e SN \
) ot cz'xH N
1

¢

1 The system is overdetermined because the lines are restricted by the
ascumption that they intersuct. .The survey-and measurement accuracy
may ve checked by a compari.rsgq,a * ‘the two-values «of oy

,Al




If we denote the direction cosines of the missile's axis by (m, n, p)
then the equations of planes containing the missilet!s axis and the shadow
of Ehe reference point on the vertical and horizontal planes respectively
aret:

x-cl ¥y-co z -0
0~ Yy - © z.V-O . =0 (10)
m n o) |

x-cl' y-cz' g2 -0

xH-cl' O-cz' Zy = 0 a0 (11)
m n 3]
If tan V is the slope of the shadow of the axis on the vertical plane,
the point (0, Yyt tan V, Zy * 1) is a point which satisfies equation (10).
If tan H is defined similarly, the point (xv + tan H, 0, zy + 1) lies in plane

described by (11). After a few algebraic manipulations, these equations
reduce to

: Cqt Zy ,
m/p = tan H = n/) =7 - Xyfey' + 3, tan H (12)
. 2 2
C2 &y
n/p = tan V + m/ = - ‘yv/(:_.L + - tanV (13)
1 - 1
andm2+n2+p2=1 (1k)

1 These determinants are the scalar triple products of the vectors (x - ¢,

¥y -cy z-0), (0- Cys ¥y = Cps Zy - 0), (my n, p) and the vectors
(x -cytyy=cy'y 2 =0), (x5 -cy" O ~cy'y zy =0), (m n, p) re-

spectively. Since scalar triple products represent the volumes of the
boxes formed with the three vectors, these quantities will be zero only
when the point (x, ¥y, z) lies in the plane determined by the vector

(my n, p) and either the wvector (0 - s ¥y = Cpy Zy = 0) or the vector

(g = e1's 0 = e, 2y = 0).
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From (12) - (14) m, n, and p may be determined. If L denotes the distance

between the reference point and the center of mass (xcm, Yome zcm), then

Xom = Xg + Ml + X4
Tom = * 0L+ Y (15)
Zom = 20 + pL + Z4

where (xj, Yis zi) are the coordinates of the local origin of the ith station

relative to a fixed origin. The computations described by equations (6) -~ (15)
have been coded for the (rdvac and the IBM CFC for measurements obtained by
#iann Comparator or light box., At the present time the card output of the
Telereader can be processed by only the Ordvac,

Finally it is necessary %0 compute the two components of the yaw from the
direction cosines. The yaw angle measured in range work is definsd to be the
angle from the tangent to the trajectory to the missile's axis. For the flat
trajectories encountered in spark range work and, for small yaws this can be done

by the use of the simple relations:

N XH =6 o- 3z (16)
Ag=n-E (a7

where XH is horizontal component of yaw in radians

kv is vertical component of yaw in radians
dx 3 1] 1t $
I 18 horizontal slope" of trajectory

%% is "vertical slor 2" of trajectory

For hand reductions %§ and %% may be computed by differencing values of x and

¥ between successive stations., .is coded for the Ordvac the stations are divided into
four or five groups, and for each group x and y are fitted by a quadratic

function of 2. .From these_resulting equations g% and ggrmay be obtained.
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DRAG AND ROLL REDUCTIONSY

a. Drag Reduction

The drag force as measured along the trajectory is defined to be pd ulKD,
where p is the air density, d the missile's diameter, . the component of the
missilet!s velocity, u, resolved along its axis of symmetry, and KD its drag
coei‘ficlent. If we assume a flat trajectory dlrect.ed along the z axis,

LY =y = 3-5 for small yawing motion, and
mi =~pd®u KD ‘ (18)

If we define u' as gﬂ ahere p = % is non- dimensional

du dp dz un
_ “TET T (19)
and® :
u' oddy, <
w GG = @0

Since distance, not time, is a more fundamental and convenient measure-
ment in range work, the distance is taken to be the independent variable. It -
has been found that a cubic equation in distance fits the timing data quite
well and for this equation we have

t=a +a P+ a.‘,.)_p2 ~=- asp3 (21)
g.&
- dz Ed p = g’-
vrE Ot
dp
- d (22)

(23)

1 The drag reduction is also described in [1], [27, [3], and [L] while a
detailed description of the roll reduction is in [10] .

3
2 K's will always be related to J 's by 29- "d K, = d, .
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From equations (22), (23) and the velocity of sound we can compute the
Mach number and its associated drag coefficient, For the greatest accuracy
we normally evaluate both at the center of the observed trajectory.

Equation (21) is written on the assumption that t can be represented
by a cubic in z. It is known, however, that K, is a function of &%, the

squared magnitude of the yaw, and M, the Mach number. Although the Mach
number variation onm the range is usually small, the yaw can undergo large
changes. Therefore, a yaw drag reduction was formulated by E. J. McShane [17.
We will describe a modification of this reduction. First the assumption is
made that Jp is linearily dependent on 62 and M:

' 2
JD = JD +5°d

J
&, (_,,... ) dp (24)

and Jn are constants.
M

Substituting (24) in (20) and integrating,

p
: S ET
Lag ©°
u
p p
s1l+g, peyJ s2dp+ 3 4 (w - u,) dp
D, Dg2 Vg Dy o
o 5 O o
+ % « f JD, dp‘ (25)
0 ).
We now replace the quadratic term by %-35 2p2 where 35 is an average value

l dt 4t ,1 . .
of the drag cosfficient. Using the fact that & = &= = o (H>’ integrating

and rearranging,
4, d 2

b=t tEprE P s
Yo Doz~ u

»

Ly 1()42 9. I, (p)

, + e : &

— "8 D2 1P g p, T2 P
(26)

(o]

lﬂ-
£
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L (o) p P _ ‘ >
1\P 5 j o2 dp Gp
o (o} 0 )
p R ”’
(p) & ) ap 4 {
Lp =) dp odp !
o] 0 . i

Assuming that u can be approximated ty (22),

- e ) -
a, _. . ’
B pe Byt
hon
. 2a2 0
LR
a 3 = - TS STETS TS s e e e - - - - T - - —
’ 2
Iz(P) *=3 P3
a
l .
For convenien'ce we select SD to be the value supplied by the standard - :
2 . ' . :
drag reduction, namely -2 + .Therefore
1 ! +
- d a_ - d
t=t, +—;p+ JD f—+- JD(J' HJD §-+ Jnszll(p)
- . . (26')
vhere M = Ta; is the average Mach number since p 1:3 selected tobe

zerc at the middle of observed trajectory.
* 1
It now remains to evaluate I,(p). ,

In[1]or[5], it is shown that for a symmstrical missile the total "7_
Yaw A can be written as

"')‘H*:D‘V'K

PR '
le (':{1 *’1’1) P,’,KZ e (““2+1¢2 )p+xn

(27)
where Ki are complex constants

ui are real, constants

¢i are real linear functions of p

)‘R is the "yaw of rerose" and is determined by a yaw reduction as
. described in the next section

It k is small,
2 2 "2 2 "2 -, +
B eatag e “1P+x2‘ %P + 260k, 0"(% a,Jp |
cos [(’2'41 )P." (¢20'¢10‘i . (28)

i

where.Ki - 1{10 o ¢ io

13




If (28) is placed in the definition of I, and the indicated integrations
are performed, there resultsl:

2 [ 672%P .1 4 2a,p
(201)2 | (2a,)

{ e’(“l * 02)p cos [(9'2' - ¢1')p + Y] - cos ¥
. -grcos(y +q) (29)

where r = \[(sz' - ¢1')2 + (a1 + a2)2

¥ = Fpg = Fyo - 2L

? !
% P S, - -(a]_ + (12#) . ¢2 "¢l
* 71 = ar¢c €0§ ————=—= = arc sin ———=
r r

The procedure for yaw drag reduction is_first to perform a standard
drag reduction in order to obtain values of Jn and M which together with
an estimated JD determine the cubic coefficient. A least sqiares is then

M
- - d 4 - d
run for the remaining unknown coefficients, t, q, ﬁ-; JDO, and 1-1-; JD52'
3 If JD is not fixed, a least squares fit of five parameters can be attempted.
M
2

This latter procedure has been ineffective up to the present time®.

The wvariation of drag with yawing motion for a group of identically
shaped models fired at about the same Mach number can be determined rather
simply, however, from the standard drag reduction. We assume that their
individual drag coefficients are average Jn's, over the length of observed
trajectory. Eq. (24) can be written in the form

2 .
Jp=dp +6 Jp 2 (24)
o )
D 1 The cosine term is integrated as though ¢'i were constants.

2 This yaw drag reduction has been coded for the Bell Relay Computer by
J. Schmidt and L. Schmidt.

> o
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") 1 L,
where §° = ——— 6 dp (mean squared yaw)
Pp, = Pp f

Pp

pp is p coordinate of missile at the first timing station
Py, is p coordinate of missile at the last timing station

—_r
The value of 6 is a by-product of the first integration involved in
obtaining Eq. (29):

2apn _ s2ap 20,0 _ 22
¢ - [K 5 EE oy L+ 15 & agpFag - asz)]

where the integral of the cosine term is neglected for the usual large
values of Py, - Py encountered. The drag coefficients for each round are
then plotted against the corresponding values of the mean squared yaw. A

line is fitted to these points and good determination of KD and KD o for
the comon Mach numbers can be made. o 6

b. Roll Reduction

The equation of rolling motion for a missile with rotational symmetry
may be written in the form [10] ¢

v'-Dv+k.I2J I‘SV
A,

where v = 8 = —— (30)

8 is roll angle

o axial angular velocity =2

ka J
A A 1 A
D'JD'}“I JA, D‘D+—_v—'g
k"2 = md? (k, is axial radius of ation in calibers)
1 "1y &yT
m = mass

A = axial moment of inertia

and X, and K, are defined by the relation: axial aerodynamic moment =
o

3,2 v .
pd-u [KAO - vKA]

15




The solution of (30) can be easily obtained and is

0 =B+ sp + AePP (31)
k7,
where s = - —=—° (steady state roll per caliber).

-~

For range work the roll angle may be measured by means of two pins of different
shape, in the base of the missile (see Fig, 8). The location of these pins in
space may be calculated by use of a slightly modified center of mass reduction
coding and the orientation of the veetor between the pins then provides the
roll angle,

If D is sufficiently small1 the exponential may be expanded as a cubic in
p and the standard drag reduction coding which is available both on the Ordvac
and the Bell Computer can be used to fit 6 as a function of z. In general,
however, a new reduction procedure is required. Furthermore since the unknown
coefficient D appears in a non-linear fashion the iterative method of differ-
ential corrections is needed.

In order to start the iterations a set of initial values is a prerequisites
To do this we differentiate (31) and use the result to eliminate the exponential:

_ _e.(3_§)+sp+%e' (32)

e' can be computed by numerical differentiation using first differences and
equation (32)8fitted by the routine least squares since it is linear in un=-
knowns (B - U)’ s, and . From these B, s, D follow ahd by use of (31) for

a particular station, A is determined.

From equation (31) a relation in the differential corrections of these
values can be derived:

A =8 = AB+ pAs +e?P AL+ Ap 2P AD (33)

observed ~ ° computed
8 is computed from (31) by use of the initial computed values of A, B, s, D or
the values obtained from the preceding iteration. Since (33) is linear in the
correction, ordinary least squares apply and a set of corrected coefficients is
obtained. If the 'initial values are close enocugh, the process will converge.
Most rounds require no more than two iterations. The complete roll reduction
is coded for the Ordvac while the iterative process of (33) is coded for the
Bell Computer.,

1 This is the case for bodies of revolution,

16
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In {16] the variation of Ky, and K, with Mach number I considered.
0
There it is shown that KA, can be quite well approximated by an inverse

linear function of Mach number. For simplicity we will make the quite
reasonable approximation that I itself is such a function.

. . D = (a + bM)-l

b

Now from Eq. (22) it is easy to show that a good approximate relation be-
tween Mach number, M, and position on range, p, is

M= (1-Jyp)

From these equations we have
D= Do
TTYT
where D = (a + bMo)"l (vaiue of D at p = 0)

‘Y E 3 - .a_.
14+
bp[o

The further assumption that the ratio of k{zJ A toD is a linear function
- - )

"of M or p must now be made.,

k:'L'QJAO = - D(so + s'p)
From these assumptions the following revised Eq. (30) results

v!'=D(y= Se - s'p)

=20 (- s, - 8'p) ’ (309
1l =-yp
This can be integrated to
8 =B+ sp+ Cpt + aet(P) (31
where f£(p) -,‘_Y_’Eg in(l + ¥ p) = Ep(1 - IZE + i?ﬁ - IEP—B- e s)
Y :
17
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¢ =3 D°)
T \D,-%
E-Y+Do

By use of Eq. (31') we can now modify Eqs. (32) and (335.

9 = (B--st-.~,-)+(s-%?-)p+cp2

wheref'.-E[l~Yp+'(Yp)2-(Yp)3 J-E -
A8 =AB + pAs + pPAc + e Pan apef(Plp1 - P L ~)aE

+%—r9' (32')

2
..Aef(p)Ep %-- 2333 + 3(yp) : 1 N . (33')

- ¢ @ ]A“

The procedure is quite similar to the regular roll reduction. First B,
8, C , and E are calculated from Eq. (32') by a least squares fit. These are
placed in Eq. (31!') together with @ and p at the station for which p = 0
and B is computed. Next y is either estimated or computed from Eq. (31') for
a station at which p is large. Finally Eq. (33') is .employed in as many
iterations as necessary for complete convergence. The problem as it is being
coded for the ORDVAC will have the option of fixing v (Ay = 0) or allowing

it to vary. This reduction then will be either a five or six unknowns problem.
Recent experience with Small light finned missiles definitely showsthe need for

this modified reduction.

YAW REDUCTIONS®

For missiles possessing angles of rotational symmetry less than 180° and
planes of mirror symmetry, the definition of the linegarized force and moment
system is well known (1], fg] If the requirement of mirror symmetry is
relaxed slightly? we have the spin producing moment J, of equation (30), [10]
If in addition to this we assume either a slight conf.igurational asymmetry or
slight mass asymmetry [137 , the transverse force and momént definitions
receive a constant m1331le~attached force and moment increment. In the theo-
retical development of [9] the usual coordinate system is orientated so that
the one axis lies along the missile's axis of symmetry, the two axis is in
the horigzontal plane pointing to the right and the three axis is determined
by the right hand rule. This selection of the 2 and 3 axes is the exact re-
verse of the orientation of the ranges’ x and y axés., Since, however, the yaw

In order to understand fully the next two sections, they should be read in
conjunction with [9] . X

2 In other words the assumption is made that the differential canting of .
fins of a finned missile affectsonly the axial moment,

18
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as defined in( 9] is measured from the missile's axis to the tangent to
the trajectory, the reverse of the range definition, we have )‘2 = A 1 and

Ay = My where My, \ are the yaw components of [9] . The aerodynamics

force and moment acting perpendicular to the missile's axis can now be
defined as:

22 [o . . i0 ,
Foy + iFy = pd ) [( Ky + :wKF)X + (vKXF + iKg ) + KNG}“-‘ e :] (34)
. aa 3.2 . . . . i0
1-12 + iy - pd’uy [(-w{T - 1KM)X + (-KH + 1vKXT)u + IK‘MZ‘G e ]

b
where 9 -j vdp + eo (roll angle with respect to force due to asymmetry)
)

mld

Vo=

(ml, 0, (03) angular velocity vector
A=), ot iXB (complex yaw)

mzd lm3d )
Bo= -31— + i -—u-l- (non=dimensional angular velocity)

A ¢ magnitude of agymmetry angle

KN Normal force coefficient

KF Magnus force coefficient

KS Damping force coefficient

KKF Magnus force coefficient due to cross spin
Ko Magnus moment coefficient

Ky Overturning (or righting) moment coefficient
KH Damping moment coefficient '

KXT Magnus moment coefficient due to cross spin

KN Normal force coefficient due to small asymmetry
€

KM Moment c'o'efficien,t due to small asymzetryl
€

1

In the case of mass asymmetry only the product KM A ¢ has meaning and
€

can he computed from the physical measurements of the projectiles This
remark, of course, als6é applies to the product Kfi—“\‘ ¢

19
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£ €
the task of insuring that the force and moment associated with the asymmetry

It is easy to see that the exponegﬁial coefficients of K.N and KM perform ‘ (
|
be missile-attached. l

The equationsof motion which can be obtained from the above definitions
for flat trajectories are:

" ) - 1 -] i ) -
z +(H_iv)'x +[-r-1-ivTJx-c-+Jee19 (35) _
-y A -

vi =D v

where
-2 B =

H,=JL-JD+k2.JH,JL JN-JD

- A . .
V"{-ﬁ v ‘

B transverse moment of inertia
2

J

-2 ‘2.2 « k"
M= k52 3+ VK JF]-2 M

T=dp -k~ Jp
_ igd 2 .»]
G —iz [JD+k2 Jy =17V ,

R A -2
Jg = .[1 v(1l - §) Iy -k JMe] L

-2

J

€

2 .
kz"2 = "%— (k, is transverse radius of gyration in calibers),

- The solutions for these eguations of motion can be written for the case ‘
of slowly changing spin as

2
) ' " 2 { ]
\ = K—l e—a_lp + i‘(¢lo p + ¢1 %_ ) * K2 e LYY + 1(5120 p+ ¢2 g ) +1R+K36195 (36) '6
1
. ' (X 2 P A AL 1/2-)
~ap + i(@p + 9 5—) = 1/2J‘ {~H +1iv - D € 0+ [-ﬁ + 21V (2T-H-D)-J dp

(o}

p
~oop + Ufpgp + Ei)* 1/2 f {-H + 15 =D € - [-ﬁ + 215 (2T-H-ﬁ)]1/2}dp

[¢]

where

1 Sae Eqs. (8) and (11) of [ 9] « For the relation defining K3 see [137 .
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. 2[5 20eru5)?
7+ 45° (21-H-D)2

e oo -

Kl and Ké are complex constants depending on initial conditions

J .
K, = € e HP30-0), ¢

Y 4 -K
2 [y + (8 )] [~ + (8, -] =

If we differentiate and add the definitions for the exponents in Eq. (36)
and equate the real and imaginary parts,

- ' ! it "
V= ¢i + ¢é where ¢i - ¢&o " ¢i p

30 real,

(37
= (o +a) -De,y (38)
lext we differentiate and subtract the definitions
B (20-1-D) ] ?/2 = (a, = ay) + ildh - ?,)
R (- d)? - (g - ay)? (39)
¥ D) = (e - @) (@ - B )
Inserting the definition of m in (39) and using (37) amd (38),
) ! ' €4 A €1 A )
Medy oo =00+ 5 D+ o= 5 D) (1)
BEquation (40) can be solvéd for T:
¢:;_ - ¢; /\.l
T = -1/2 [( -a,) =—% -HD (42)
TR gy T

N
1 Although, as we shall see, D can be computed from the yaw reductions, the

resulting values are sometimes quite bad due to experimental limitations.

For use in Egs. (38), (41) and (42), D should either be estimated or
directly measured by a roll reduction.
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It remains to compute € 1 from its definition. But this can be done
by means of equations (36), (39) and (LO).

@ #y)° [wl’ - ¢y )% = (o - a2>'2] +2(a - )0 -d,)

€ =
1 : - 5] 2
o | - e e - 7]
. | H e :
- -%—-f% : (u3)
¢1 - ¢2

Gy Gp, ¢1, ¢2 are quantities which are obtained in the curve fitting

process to be descrived shortly. By means of equations (37), (38) (h1),
(L2), and (43), the spin v, and three combinations of aerodynamic’ coefficients
M, H and T may be calculated. Although KM can he directly obtained from M,

an independent 'evaluation of KL is required in order to obtain KH and KT from

Hand T respect:.vgly. The variation of the turning rates is caused physically
by the change in v and M during flight., Using eqaations (30), (37), and (41)

we have
5.5 G ()
v ¢]'_ + 9'2'
AR AR A A (15)

Symmetrical (Epicyclic) Yaw Reduction

We will first discuss the reduction process for a symmetrical missile,
(Kﬁ Ae =Ky, = K3 = 0). This yields a rosette or epicyclic type yawing
€ €

motion. Fig. 9 shows the yawing motion of a spinning body of revolution .
. with negligible yaw of repose and Fig. 10 displays that of a rapidly spinning
finned missile,

The first step in this reduction is the calculation of the yaw of repose,
For velocities greater than 600 ft/sec.l, a good approximation from its

definition can be obtained from equation (36) and is A = s_@_;_: . All the

Mu
quantities in the above relation are either known quant:;.t:\.es or may be ‘quite
easily estimated. Of course once initial values of g‘i are obtained, equations

(37) and (1), neglecting the effect of «,may be used. The yaw of repose is
real and negative for positive spins which means that the missiles will tend
to point slightly to the right of the trajectory.2

1 Range Tirings are usually restricted to velocities greater than this value.

2 Tt should be remembered that the positive real axis has been selected to
point to the left.
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This computed value of )‘R is then subtracted either numerically or
graphically from the measured )‘H'S and the resulting yaw values plotted in

groups of five or six stations., For these groups,which cover about 15% of
the total length of observed flight, the effects of damping and change in
turning rates are assumed to bes negligible, (ai = ¢J!" = 0 ) The points

should then satisfy equations of the form

S A=A =K e 3@‘.1.0 + &0 (p-poj (kg 1@20 + g (op,)] "
idio

where Ki = Ki o © 3 Kio real

1
~ig (p-p,)
Py is value of p for middle station of group. Multiplying by e

. t t t . t 1
Y “’"’°)<x N ei@m * (Who-9")(p,) J@?O* (o-?") (p-p,)
¢ R ™ X0 %0
| (u7)
This can be done quite easily by use of a compass since this multi-
plication is equivalent to rotation of the yaw angle at p through the angle
-g! (p-po) . Should ¢' be so guessed that it is quite close to the local

slow rate ¢2'0 the above equation reduces to the equation of a circle:

'y + ( ! - ) - .
(h-hg) K e J@10 Ho = o) (0 Pol Ky el¢2o (18)

e-idéo (p-p,)

This trial and error processl can usually be done quite quickly and the
completed solution is shown in Fig. 1l. Note that ¢1'O can be obtained

from the .position of the points on the circles. If the ¢i o's obtained for

adjacent groups with due care i;or multiples of 36()O are considered, some-
what more accurate values of ¢i 's may be computed for the midpoint of the

interval between them. If these values for all of the groups are plotted
against p, estimates of @' can be made by use of a straight line fit.

Finally the Kio's are plotted on semi-~log paper against p and a; can be
determined from the slope of a fitted straight line,
From the above brief description, it can be seen that first values of
the four initial constants Kio’ ¢i°'s for the range origin, and the six
L]
parameters ayy :':o and ¢i may be determined. It is now necessary to apply

1 An interesting variation of this process which makes use of an analogue

computer is described in [7] .
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the method of differential corrections which was first described for the
roll reduction. The equation for the differential correction and the re-
sulting normal equations are given in [3] and [8] .1 This ten unknown
vaw reduction has been coded for the Bell Relay Computer, Eniac, Edvac and
Ordvac,

If a roll reduction has been done, much additional information is avail-
able for the yaw reduction, The D which appears in equations (38), (L1) and
(42) is always computed from the drag and roll reductions or estimated from
experience with the configuration under consideration and is not obtained
from Eq. (44). The two values are compared in order to give an indication
of the quality of the yaw reduction, Insertion of known values of D and v
would eliminate one ¢ and one ¢f¥' . The requirement that M' = O would then

eliminate the other ¢£ . Pinally an inspection of equation (26) shows that
e when v = O, Thus we see that the number of unknowns can vary from

six to ten. As a result of this fact three variations of the basic ten
unknowns yaw reduction have been coded for the Bell Relay Computer, -+ They
are:

1. eight unknown52 reduction which uses fixed values of ¢;' as obtained
from equations (hl) and (L5) and initial values of ¢; .

2; seven unknowns reduction which uses fixed values of ¢; and the

additional restriction that g + ¢, = ¥.is known.

3., sgix unknowns reduction which is hased on the assumption of zero
spin and constant moment coefficient (M' = 0). For this reduction

t ] ] 1]
¢1+¢2’°’°1’°2»’a“d¢'1’¢2"°'

For certain rounds these special reductions have proven to be superior to
the basic ten unknowms.

1 [ 3] uses the triangular square root method of matrix inversion while [8]

advocates two methods which make use of the extensive symmetry of the normal

equations. T'or considerations of machine time we have found that most of

the time of computation is dewvoted to input, output, and formation of normal

- equations. As a result of this experience most of our recent work has used
essentially the Gaussian elimination method of inversion., It has also been
found that a floating binary point routine as described in [12] is of great
value and does not greatly increase machine time requirements,

2 When a variation of the eight unknowns yaw reduction was coded for the CPC
at the Naval Ordnance Laboratory, use was made of the symmetry by means of
performing all operations in the arithmetic of complex numbers. This was
possible because this reduction can be considered as a problem in four
complex unknowns,
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Aagyrmetrical (Tricyele) Yaw Reduction

t is axtremely difflcul‘ to reduce tho'yaw notion of an

Since 1

+ i u-.. 5 -, 4 'R o W
3.,_,"~1f.=ur f 1 missile without knowledne of the rolling ”xot:wn, we will only
consider the reduction of rcmnd.; for which a roll reduction has been rer-

fornzd. It should be emphasized that equation (36) 'is cxactly correct
only when v is omtant It is,assumed that for small variations of v ,
when it does not get close to ¢l, the relation is sti_ll valid, When v

varins near @, rescnance occurs and equauion (36) clearly is not valid.l

Frem the roll reduction we Ynow the change in ¢3 bnt not, ¢30 The problem
then is to compute ¢30 and Kq5. 5

F
H

i
First all of the yaw points arc plotted and rotated through angle -(® -eo).

' This yields?
0-0)1  (-a + if))p - 1(0-8,) (-2, + 10)p-1008)  1¢
= ) 'Ki“ g | 1 70+-K2e: 2 2 O*K-me 30
(49)
' Since 8 13 linear or ver rearly 1linecar, the result is an epicyclic motion
S i
- about the point K30 e (Flgures 12, 13, 1k, illustrate this process). It

* i3 now easy to determine Ky and 9’30 since they a.re the polar coordinates of

the center of this epicyclic motion, The origin is moved to this point and
: the points rotated back through the angle 8 = 6 °* *It is now possible to per-

form the usual epicyclic reduction and so obtain the remaining parameters,

The 'oricyclic yaw differential correcticns rcut.ne- has been coded in two
i forms on the Bell Relay Computer and is now being ¢oded for the Ordvac. The
: reduction as coded for the Ordvac will be a nine uninowns problem formed by
: cmbini.ng the seven unknowns epicyclic yaw reduction with the two parameters
Kags ¢30 of the tricycle arm. The two Bell Relay CG:!puter versions are eight

" and ten vaimowns problems and were formed by comb:.m.ng the two tricycle para=-

- Nwe

matorg with the six unrlmowms and eight wnithowns apicyuu. vaw reductions

ft W s

respcctively.

1 In order to roduce reecent firinss b+ J. D.1 x.zcol;ides and T.. C. MacAllister
for asymmetrical rounds which go t.hraug"z msomce, use is being made of the

Extorior Ballisties Laboratory's A-n;og Camuter in a fashion similar to
that described in [7] . Work is teing dome onm this by J. Schmidt,

2 This mathod was sugpested by 1. C. “azA.listor [15] xi,‘ for most tricyclic
models is oxtrorely small aunl so iz reglscted, ‘
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SWERVE REDUCTIONS

The last bit of dynamic information which can be ohtained from a free
flight range firing lies in the lateral motion of the missile. The equation
of motion, which the x and y coordinates of the center of mass of the missile
must satisfy, may be written in the form:

n(¥ + 1) = (F, + F.) - ing = ma; (50)

where Fx is x component of the aerodynamic force

Fy is y component of the aerodynamic force

g 1is acceleration due to gra.vityl

a, 18 the Coriolis acceleration

C

If wa ragsolve the aawnﬂ'rmﬂmﬂn fores alone the x and Y, axés . renem E’IJ.flg

Vaaws pr—HET L O

that the small angle between the 1 axis and 2z axis is \ + x_%_:z and that the
2-3 axés are the negatives of the xy axés when this angle is zeros

Py + iF, = ~(F, + iFy) + Fy (v + 223 (51)

But Fl is defined by the relations:
2.2 ‘ . :
Fy = -puydKy, = mby uy =g n = (52)

In[1] and [9] the following equation is derived for the symmetrical
missile:

)u-ips(-JL+ivJF)x+(vJXF+iJS)u‘+Y':0 (83)

where v is a small contribution of gravity.

The insertion of the term JN L) 10

3
! .
does not effect the approximation A =~ ip = O,

in Eq. (53) for the asymmetric missile

Using relations (3L) (52) and (53) and converting from K 's to J 's where
necessary we can rewrite (51) in the form: i i

2
Fx*'iFy'%"[(JL'i"JF»'*('Js+i"J - gy 'keeia]*'-—(x*iy') (54)

1 The standard value of g at the Aberdeen Proving Ground is 32,152 ft/sec 2,
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The usual change of independent variable is now made

X'+ iyt - [(x*iy)‘ %] %-

X3 . 2 . . ® Y 2 f
= G @ -G 2 (s5)
.o .0 2 . . ':
Ceox e dy = () O ayt) ¢ (x v dy) D (56)
Substituting (5L4) and (56) in (50),
. a d
X!+ iyt - - i - B _igd _ C_
* (I = I + (g + dvdy Nt Iy e e _1&17 3 (57)
o
Integrating
X +j_y xl+jyl % p p
x + iy 0 "vo o Vo . .
A i pff ( (3, = ivI ) dp dp + J’ (~Ig+ivdy o) (AR )dp
® o a}
b D : - :
lyG (XC + iy,) 8
'Jnlejfeiedpdp- T - 3 C (58)
€
2
where Vo " gd j j dp dp
P P
+ WC jf dP dp
o Yo
If we assume that the drag coefficient is constant,
u-2 - O -2 2JDP (59)
: 2 w2 |e®pP = pp-ll, 5 5|5 gp3 g b “
-.y(}’gduo 5 -gduo +D +D ( )
(29p) : 6

1 The variation of v in the product VJXF was neglected,
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It now remains to compute the Coriolis acceleration 3y It is shown
in most mechanics texts that the vector ZC =2 Ixt where _/-f is the angular

velocity of moving axes with respect to an inertia se}z)of axes and "uL is the |
missile's velocity with respect to the moving axes. is therefore a vector |
directed along the earth's axis of rotation with magnitude,Jd , of 2n radians

per day or 7.272 x 10=> rad/sec. Ye ngw iptroduce an auxiliary coordinate

system formed by the unit vectors %l’ €5, 3'3, located at the gun and so

orientated that 32 points up and 3’3 points north along the meridian of

(longit.ude. If ’,V is the angle between ?3 and the ranges' z-axes for which

positive orientation is defined to be from ’53 to’El and the unit vectors
along the ranges' axes are denoted by ?x, k3 and"éz respectively,

y
> >
62 - ey
> * . |
C =f€z cos‘}' -'e, sin l'l/ (61)
%l ='52 X%B '%x cosy +’éz sin V’
Now 3 % u §_ (€2)
nd L= fL[2; cos 0 + 3, s ¢] (63)
a 3 €S ¢, sin € .

where 6 is the latitude taken as,positive for the Northerr hemisphere
-
e IC =2 ﬁx u

=2 ../L[(?z cos% '-gx sin)b) cos 8 +'g'y(sin Gﬂ xu?z

. +> >
= 2y _n.(s:m *cos 9 ey * sin © ex) (&)
Using our complex notationf
ag = 2u_n_(sin 8 + 1 cos 8 sin yl) (65)
1 For Aberdeen Proving Ground 6 = 39° 26', The ranges are so orientated f’

that Y is 2700 for the Aerodynamics Range and 168C for the Transonic Range.

28




. xg + 1rg = 2 & dz(sin'i +icosb sin ¢ )J\ f ut dp dp
: o Yo
3 204
12 e s Jgp”  IpP
= Qu d (sind sicos 0 sin ¥ )(p +—3—+'T2—') (66)
Evaluation of the quartic terms shows that they may be neglected in
Eqs. (60) and (66). It remains now to consider the three integrals involving

aerodynamic cogfficients and yawing motion. We will first consider the
epicyclic yawing missile and then the more general tricyclic yawing missile.

Bpicyclic Swerving Motion (K3 = Ky e = 0)
‘€

Y 3 ! 11 1]
1f we insert eq. (36) in eq. (58); assume ¢1 =g, =0, which implies
y! = 0 and integrate, the result may be written as

x # x, + iy * ¥ ¥ ¥g) -
c c 'Y’ (- + iffho)p
3 P+Qp+B.1Kle : 10

(67)

- vy (g + dp)
(=q, + if,4)P *p D
+ RK, e % 20’P + T
where P and Q are complex constants depending on initial condttimsl
Ry = Ryy + iRy
Ryy =347 91 * Paadr * Cin Jg + 41 Iyp -
2 2 ’ . 1 .
(WE-ed sl
=5 22'L 3 22 F
(¢io * &5 ) (qio + & )
.¢l
Gi J + Y ¥i0 J
-+ _¢'§ - ;"é S ¢'2 r el w
io0 ) io i
Ryp = 340 I, * P2 Jp ¥ G2 Jdg * 455 IxF
[} 12 2
i of 9y 5. v(¢io - @ ) ;
7. 22 'L ','¢'-§"[’T"2' F
Pi0 ¥ M/ (Fi0 * o1 )

o G

1 The lower limits of the integrals of Eq. (58) together with\, are
absorbed by p and Q.
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;1' Q. v

. J0 J i J

T‘T‘du . o 5 - '-‘Q"—T( G’ . &) pey
io i io 1

P P P
% * 5p
" (9;, - ivdg) A dp dp + (<Jg + 1vdyp) A dp (Drift)
o o

(o]

' If we insert the approximation - dy for )‘R’ neglect the very%small
single mtegral and remember that for r::holnsx1;ami: D and JD s Ve e F and
u=u e D p, the drift components may be computed to be 1
P p P P
- 9 N
) %*’L Jr EM% & dp--ﬁ‘% f @ + 2dp)p i ap ;-JLE%(EZ“" m2JDp3)
o 0 °% ) M

P
Beds . gdv °p 2(D+J )p . gdid g 2 6+JD-153
Mu Muo
(68)

JIf JL and JF are estimated, X and Y may be computed and subtracted

from x and y respectively. This then makes Eq. (67) a linear equation in
eight unknowns to be fitted to the measured values of x ard y at each station.
This may be done by the standard least squares technique.? y and JF may he

computed from Rij , inserted in the formulas for Xy and ¥ and the mrocess
iterated. An iteration, however, is not usually necessary.

1 In almost all firings where drift is measurable, D = Jp = k,™ J, ~ Jp .

Use of this approximation will simplify (68).

[0

In this calculation the id,, P terms which appear in the exponentials are
replaced vy S.(’aiop ¢i g_) This inconsistency in the handling of the

-

di's was felt to yield a better approximation to the true motion. See page
635 of [1] or page 20 of 2] .
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1
For missiles possessing a fairly high rate of roll, ¢i is usually rather
large and for these missiles the size of its associated swerving motion R1K1
is quite small and poorly determined, But a knowledge of R, alone pubts us
in the position of having to solve two equations in four owns! The situa-
tion is improved by the fact the d21 and d22 are quite small and hence JXF can

be neglected. Since Coq and Cyp are usually small, JS can also be neglected.
In those cases where Cyo is not small enough to neglect Jgs an estimate of JS
is inserted. The remaining set of two equations in two unknowns is then solved
to yield values of Ki and gF'

For missiles which have been launched with no roll an important simplifi=-
cgtion is possible. For these missiles it can be seen from Bqs. (35) that

¢i = -¢5 and oy = a,. The additional assumption M' = O provides the result

that ¢f = ¢g= 0. Insertion of these relations in the definitions of Rij now
results in

Ry = & (69)

t ‘ 1 (70)

Rig = Bpo * 3 —3 9 * s I
(P + &) o * o

By means of Eq. (69) the swerve curve fitting of Eq. (67) is now reduced to
one involving six unknowns.! Both the six and eight unknowns swerve re-
ductions have been coded for the Bell Relay Computer although only the eight
unknowrs swerve reduction has been coded for the Edvac.,

Although the eight unknowrsswerve reduction just described has been
employed successfully for some years, it possesses three undesirable features.
They "are: '

1. The reduction is so formulated that the contribution of the higher
frequency mode of the yawing motion to the swerving motion has to be neglected.

2. In order to correct for drift it is necessary to guess a KL and a KF'
It would be desirable to use drift in the evaluation of KL and KF‘

3. The effect of ¢f ¥ 0 is handled in an inconsistent manner,

1 Note alsc that for no spin "% " 0.
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It was decided to eliminate features (1) and (2) by placing equation
(67) in a form in vhich the aerodynmamic coefficients themselves and not the
intermediate Ri's are the unknowns., In doing this it was further decided to

neglect the effect of Kyp. Finally the inconsistent treatment of non-zero
’ kg

¢i's wags corrected by means of an asymptotic series expansion of the swerve

integrals,

In order %o obtain this expansion we will consider the integral f epdp
where B" is constant. If this integral is integrated by parts,

BE
fepdp-fep: dp o
B Bat
oo ) e
p " p B {
_oeb g el w2 e Bra'=1 " oate3
s & s E S igaqn - dp 2 eF(B T+ p BT7) (T0)
B e f};ﬁi

n
The neglection of the remainder term is valid for small E-z since its mage
2|2 3’

= . An examination of the process of
B .

generation of this series shows that the magnitude of the reminderﬁtem
e

nitude is approximately 3

B
[

"
at the nth step is approximately 1 * 3 *5 *****(2n ~ 1) "E'f 'n ' BT' . From
" B!
this we see that for §72 < 1 the remainder will first decrease and then
B

increase without bound. This property is a characteristic of an asymptotic
series, :

1
For the small ETZ usually encountered, however, Eq. (71) is a good
B
approximation to the integral. If we integrate (Tl) again, neglecting squares

of §72,

ffepdp;lp=§-?2+-?-§§ + 2p4 f—g—?-de

sef (g2 3" p' Y (72)
32
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By means of (71) and (72), (58) can be written as:

x +x, + iy + ¥ *¥g)

- = P QIS +v JpSy+IgSy (73)
where’
s, ok et [m2esey mt] vy [ B2 o 85 |+ o
5, = K egl [ﬁi'z + 38y B"h} + Ky eﬁz [?’é-a 3, By h] *v?.f;d

B 1= - P - "
S3=Klel[ﬁl +61?13] z[ﬁzlwszﬁ ]
2
31' ‘aip+i(¢;op+ ¢; g“)

A 1 L] 2
B2 O -a)p+ilfip+¥ B

The definitions of the S,'s together with equation (68) show that they are
known functions of p. E§. (73) is then a linear equation in seven unknowns
and can be fitted by the usual least squares method. This seven unknowns
swerve reduction will be referred to as the LFS swerve reduction. For certain
rounds either JF or JS can be omitted thereby providing us with 1S and LF

swerve reductions respectively. The LF reduction has been particularly suc=~
cessful and is the standard epicyclic swerve reduction coded for the Ordvac.
The IS swerve which for zero spin is equivalent to the six uniknowns swerve
has.been coded for the Ordvac also. Both the LFS and LF swerve reduction
have been programmed for Bell Relay Computer.

Tricyclic Swerving Motion

If the complete Eqs. (26) and (58) are combined, the following expa.nded
form of Eq. (67) for non-zero ccenstant spin may be obiained,

. ]
X+ X+ % ¥y + 35 + g * yp) (~ay + ifyp)p
- = P+ (Qp+ R1K,l e
d 1
(-a, + if,,)
+ RoK, % 20, RyKy e (%)

gds, 2 Dy, 3
( -—5— p”) and, hence, is

1 From Eq. (68) we see that ;Qd is =
- L

Muo

independent of Jy This term comes from f f XR dp dp. A similar obser-
. ¥y
vation applies to =2 .,

v oJFd
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where R3 x - (JL - —fK;— ) + iv (JS + JF) + v J

XF

Eq. (74) presents a routine ten unknowns curve fitting problem for least
squares, This has been coded for the Bell Relay Computer.l

For zero spin Eq., (7h4) is invalid. A second reduction (L-L) has been
coded for the Bell Relay Computer for use on %tricyclic rounds with zero or
near zero spin, (1v] <10-4), This reduction was derived on the additional
simplifying assumption that all the aerodynamic coefficients other than JL

may be neglected. The near zero constant spin assumption allows the re-
B in 5q. (36) by

L 2 2 3 5
2o e [ a0 )

placement of e

Fer the integration, only the first term of Eq. (72) is used and the drift
terms are omitted.

v %, + iy + Yo + ¥e)

Y
”»

- = P+Qp+dJd, S, +J S (75)
n L7177 "L, Tl
vhere , p
. B el K, e 2
S": + ;S
12 B, t
1 2
. B, .
LB e ivp
Sh = — {e -(1 + ivp)}
-y

. 1 2 2L L6 3,35 57" -
ke O [g_ PYRL v +i(‘£'+y£—-y~%—-)];‘v'<103

>

Since it wasg felt that JLZKB is well determined by the swerving motion, both

JL's are solved for in the hope that their ratio would provide a correction

to 1;3.

1
1 Fere azain i¢:op terns aprearing in the exponentials are replaced by
v op?

e t
1(¢£op + Q%-§ o,

3k
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Finally we will describe the tricyclic swerve reducticn which is being
coded for the Ordvac., This reduction will be based on the ideas which were
developed in the various swerve reductions already discussed. It has been
decided to reduce the four degrees of freedom expressed by R, and R2 of

Eq. (74) to two, namely JL and JS, revise the tricyclic term so that zero

spin is no longer a special case and incorporate the full corrections of
non-zero i's. With these aims in mind the following equation may be derived.

X+ X, + % + Uy +y5 +vg)
T
where the synbols are already defined for Eqs. (73) - (75).

'P+Qp+JLSl+JSSB+RBSh (76)

It can be shown that the major component of the imaginary part of R3 arises

from JN . Both this coefficient and JS were omitted from the L-L swerve.
&
The reduction will. probably be expanded to handle slowly varying spin by the
vl
insertion of vop + 2-9. p2 for v in Sh' This will be useful for finned missiles

over the portion of trajectory for which v is within 5% of steady state.l This
now completes our discussion of the individual reduction processes.

It is interesting to consider the relative time requirements of the com~
puting machines for the various problems., This comparison is provided by Table I.
Although the Bell Computer is rather slow, it has the important feature of being

" practically error-free.

1 The advantages of numerical integration for the calculation of Su are being

considered. This is feasible when the problem is done on the high speed
Ordvac.
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TABLE I

A Bell Computer

1. Drag Reduction

2. Yaw Drag Reduction

3. Roll Differential Corr.
‘L. Epicyclic Yaw Diff. Corr.
5. Epicyclic Yaw Diff. Corr.
6. Epicyclic Yaw Diff. Corr,

a. First iteration
b. Later iteration

7. Tricyclic Yaw Diff. Corr.
8. Tricyclic Yaw Diff, Corr.
a, First iteration
b. Later iterations
9. Epicyclic Swerve
10. Epicyclic Swerve y

a. Short”
b. Long

11, 1F Swerve

a; Short
b. Long

12. LFS Swerve

a. Short
b. Long

13. Tricyclic Swerve
1. Tricyclic Swerve (L-L)

# All times are for one run only.

3*
Time in Minutes

ly unknowns 15-25
5 unknowns 90~150
i unknowns €0~90
6 unknowns ™ + 40
8 unknowns 9n + 50
10 unknowns
12n + 65
10n + 65
8 unknowns U + 55
10 unknowns
16n + 50
n + 50
6 unknowns én + 30
8 unknowns
™+ 70
12n + 10
6 unknowns
20n + 30
25n + 30
7 unknowns
23n + L0
28n + Lo
10 unknowvns én + 40
6 unknowns 10n + 30

n is the number of stations in the round.

## Short swerve reductions can be performed only when the yaw reduction has

been done on the Bell Computer,




TABLE I (Con't)

B Edvac Minutes

1. Epicyclic Yaw 10 unknowms 2.5
2. Eplcyelic Swerve 8 unknowns 6.6

Due to delays of tape handling the usual time for two iterations of yaw

I plus swerve is about 15 min.
C Ordvacﬁ%
1. Center of mass reduction (4n + 30) sec.
2. Drag Reduction i unknowns 2 min, (max.)
3. Roll Diff, Corr. Ly unknowns 3 min.
L. Epicyclic Yaw Corr. " 10 unknowns 5 min.
5. Epicyclic Swerve (L-F) 6 unknowns b min.

The usual time for two iterations of yaw plus swerve is about twelve mimutes.,

e All[rejiuctions on the Ordvac employ the binary point routines described
i.__n 12 .




CRITERIA FCR QUALITY OF RESULTS T

n

In conclusion we will consider the various ways in which the quality of
the results of the reductions described above may be estimated. There are o
essentially three ways by means of which this can be done.

First the sizes of the residuals of each fitted curve may be compared
with the accuracy of the corresponding instrumentation, This comparison will
reveal computational errors and identify rounds for vhich the particular theory
is inappropriate but will tell very little about the accuracy of determination
for individual cocefficients,

The second method describes the internal consistency of the measurements
and involves the. computation of the statistically defined standard errorsl of
each aerodynamic coefficient. Briefly, if Xi is a parameter of one of the least

squares fits described above, it can be shown that €y the standard error in Xi,
i :
mxy be computed by the rélation:

€ = ("m\
E |
xi v Aii !
€ =R
where Y v (standard error of fit)

N _ R residuals of fit
n number of measurements

| r nurber of unknowns

A 13° elements of the inverse of the matrix formed by the coefficients of

i
the least squares normal equations.
{
, ! If an aerodynamic coefficient is a function £ (X., X,) of two of these parameters

the following relation is used tc calculate the Coefficient's standard error:

2 B _ 42 af _ 2 ) (of
oy, 1= Ee )t e Ee P )(ax)exx o

oX S S YR SR

]

Xy XKy X5

* .
1 \,BX'

2 2
€ = €° =
where Xl Xz A12 A21 €

T S — e

-

The generalizations of Eq. (78) are clear,

Lt g

1 The commonly used probable errors may be calculated by multiplication of
the standard errors by .6745.
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Experience has shown that the relative magnitudes of the errors for the
rounds of a program are quite useful., For example the usual size of errors
in KH for bodies of revolution is about ,03. Rounds which have errors in KM

vhich are double this are inspected with some care. The absolute magnitude
of statistical errors is usually much smaller than the round to round scatter
and so is given little weight.

The third and most effective approach examines the effect which the
aerodynamic coefficient in question has on the motion and determines criteria
for the motion which must be satisfied in order that this effect be measurable.
For example, in order to determinate the drag coefficient the observed de-
celeration of the missile must be measurable in terms of timing accuracies of
5/8 . sec., and distance accuracy of either 015" for the aerodynamics range
or ,01' for the transonic range. This distinction is quite important. If an
extremely heavy missile were fired with no yawing motion and a drag reduction
performed, the residuals of fit would quite probably be very good. The stan-
dard error for KD could be quite reasonable and yet the KD would be meaning-

less due to the fact that the actual deceleration would be smaller than could
bé measured accurately. A second example could be constructed from the roll
reduction of a missile whose rolling velocity is within 5% of steady state
throughout its observed flight, The fit could be excellent and the calculated
value of C1 completely worthless!

Since the analyses of the drag and roll reductions have already been made
in (147 and [10] respectively, we will only discuss criteria for the yaw and
swerve reductions, Experience with the graphical portion of the yaw reductions
shows us the KlO and K20 must be of reasonable size. Since KM depends primarily
on ¢i and ¢é and these are quite well determined for K 's over five times the
experimental error of .00l rad, the criterion for KM is that Klo > ,005 and
KQO 2 005, If a spin reductlon has been performed, only one of the K 's need

be larger than .005 while ¢i.for'bhe other is computed from Eq.(36). Since H and T
deperid on the shrinking or growing of the two arms, the requirement on the
amplitudes of the two modes must be strengthened. Experience has determined
that the lower bound of .007 for the amplitudes of both modes is sufficient
for reasonable determination of H and T.

The criteria for swerve reductions requires a little more algebraic work.
First we must define measures of the effect of KL’ KF and KS on the swerving
motion, In Eq., (67) only R, need be considered for spinning bodies of
revolution, For this case the 1ift swerve (R2)L and Magnus swerve (Rz)F
are defined by the relations:

(Rl = 3 Ky /a3 * 2p5° (79)

(Rp)y = Jp Ko b212 +by,° (60)

22
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We then require trat (R2 )L or (R2 )F be five times the cxperimental accuracy in

calibers in order that the corresponding coefficient be determined. (This
transverse distance accuracy for the Transonic Range is .01 ft. while for the
Aerodynamics Range it is ,015 in.) Tor the six unknowns swerve described by
Eqs. (69) and (70), the following definitions are natural:

@) =3y JKg" + Kt e Jan® v oay” (61)

3 2 2 2
(R)g = Jg \/ Ko * Ko o J ¢1 * Cp (82)

Even simpler definitions are possible for Eq. (73)

sp=d, J([8] ) a, W/zgg_l_‘ 2 (83)

average

n
f 3 3
SF =% JF ( | S2 l )average =Y JF , 2‘_8_521_1 (8L)
S = Jg ASEN %) =I5/ 2|S3|2 (85)
average =

where summations are over all stations and n is the number of stationsl. The
criteria for (R)L, (R)S, S;» Sps Sg is the same as that for (RZ)L and (Rz)r"'

The tricyclic swerve may be treated in the same manner.

1 since '{:]si| 2 appear as a coefficient in the normal equations, definitions
(83) - (85) are especially convenient.
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TABLE OF SYMBOLS®
A Axial moment of inertiaj constant in Roll Eq. (31)
A i3 Element of inverse of normal matrix for least squares [Eq. (77)]
B Transverse moment of inertiaj constant in Roll [ Eq. (31)]
c Constant in modified roll equation {Eq. (31')]
2
D= JD - _n_‘g.__ J A
D o ™ DatM=M o
D=p+Do
v 0
E Constant in modified roll equation [Eq. (31')]

(F]_,F2 ,F3) ! Aerodynamic Force vector in missile coordinate system

(FX’FY’FZ) Aerodynamic Force vector in range coordinate system

G = iﬁ% [9, + 157 0y = 17]

2
md
H=d =9 *F

Il(p) Integral defined for Eq. (26)
I,(p) Integral defined for Eq. (26)
3
- 24
Ji m Ki.

Je = [y Iy, - kgz'JMe-] Ne

‘KA Spin deceleration moment coefficient
4KA° Spin producing moment coefficient
KD Drag force coefficient (trajectory drag)
KDA Axial drag force coefficient

_aﬁ Yaw drag coefficient

)
= 3;1 Slope of Mach number drag curve

KF Magnus force coefficient

1 A few symbols unfortunately have two meanings. These are .separated by semi-
colons. The definition which applies may easily be determined by the context,

L2




TABLE OF SYMBOLS (Con't)

f ' ¥y Damping moment coefficient
' KL Lift force coefficient
Yoy Overturning (righting) moment coefficient |
KM& asymmetrical monment coefficient ‘f
i Ky Normal force coefficient
g KNe Asymmetrical normal force coefficient
' Ky Damping force coefficient
Ko - Magnus moment coefficient ‘
KkF Magnus force coefficient due to cross spin -
KXT Magnus moment coefficient due to cross spin -
' io Amplitude of the ith mode of yawing motion
K, = Kioei¢io i
L Distance from missile's reference point to center of mass

) M= kEZJM; or Mach number

i (Ml’Mé’MB) Aerodynamic moment vector

P Constant in Eq. (58); Pressure
‘ Rw Vapor pressure of water
'Pd Pressure of dry air

Constant in Eq. (58)

Residuals

e A AT [ E
&

R
Rij Expression defined for Eq. (67)
Ry = Ryy + 1Ry

(RZ)L’(R)L Radii of 1ift swerve motion for Eqs. (67) and (69) respectively

(Ry)p Radius of Magnus swerving motion for Eq. (67)

L3
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'TABLE OF SYMBOLS (Con't)
Radius of damping force s ving motion for Eq. (69)
Constants in Egs. (6) and (7)
Quantities appearing in Eq. (73)
Radjus of Magnus swerving motion [Eq.(8L)]
Radius of 1ift swerving motion [Eq.(83)]

Radius of damping force swerving motion [Eq. (85)]

T = J, - kg°0p; Absolute temperature

Vsp

dij

—

€15 €5, €3

—_— > —
e

¢
x? ey’ Z

8

A
k.=
Ly

Velocity of sound

Velocity of sound in dry air

Constants defined by D=(a + bM)™*
Coriolis acceleration

Coefficient of drag equation [Eq. (21)]
Quantities defined for Eq. (67)
Quantities defined for Eq. (67)

x and y coordinates of horizontal spark
x and ¥y coordinates of vertical spark
Quantities defined for Eq. (67)
Diameter

Quantities defined for Bq. (67)
Unit vectors along 1,2,3 axis on earth's surface
Unit vectors along X,y,2 axis located on the range

Acceleration due to gravity

Axial radius of gyration inmlibers

Ly

g
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TABLE OF SYMBOLS (Conft)

k2 i/—;—% Transverse radius of gyration in calibers

m h Fass

o= 5% -

(myn,p) Direction cosines of missile's axis

n Mumber of observations

r Number of unknowns; quantity defined in Eq. (29)
5 Steady state spin

8, S Constants defined by kiz JA,.\ = - D(s + s'p)

u Missile's velocity i

Uy Axial component of missile!s velocity

Xy ¥y 2 Positional coordinates in range system
'(xH,O,zH) s (O,yv,zv) Coordinates of plate measurements
_ (xR,yR,zR) Space coordinate of reference point on missile
(xcm,ycm,zcm) Space coordinate of center of mass of missile
XV x and y components of drift

X0s¥ ¥ and y components of Coriolis deflection

Yo Gravity drop ‘

ay Exponential damping coefficient of ith mode

B Exponent defined for Eq. (71)

1 11 2
By = - o + if p+ ¥y &)

A A
ﬁi = Bi + Dp

Y Tea7om

Y= ¢20 - ¢10 '277 [Eq' (29)]
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TABLE OF SYMBOLS (Con't)
magnitude of yaw

Mean squared magnitude of yaw

€ = / ;211 v Standard error of fit

€5

€1

Standard error in i

Perturbation term arising from slowly varying spin (Eq. (35)]

7 = arccos. - (o + o) [Eq. (29)]
T

2] Roll angle; latitude
A =7\H+ 1)\V=X2 + 1)\3
)‘H’ )‘V’ )‘2 , )‘3 Components of yaw in radians along horizontal, vertical
1 and 2 axis respectively .
Ae Magnitude of asymmetry angle
)‘R ~Yaw of repose
pom@d+iad nondimensional cross angular velocity
Y
wd . . R
v = _1- nondimensional spin
js
- A
y = E AU
P=py Py, air density
Pas Py "partial densities" defined after Eq. (2)
t i 2 s . .
L= Fio t Bt s g- orientation of i, the mode, in complex yaw plane
Y A zimuth
0 Magnitude of earthts angular velocity
(asl,coz,mB) Missile's angular velocity
( ) Derivative with respect to time
( ')! Derivative with respect to p

g

Average or conjugate of complex quantity
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